Modelling Intumescent Coating Behaviour in Fire

Jifeng Yuan, Yong Wang
The University of Manchester
Outline

- General background and Aims
- Model building and validation
- Sensitivity study
- Implementation
- Conclusion and future works
Background

- The intumescent coating is widely used worldwide
- Intumescence is highly dynamic and depends on fire conditions
- Test data are based on standard fires

Aims

- To understand the mechanisms determining the fire-resistant properties of intumescent coating
- To provide a robust scientific footing to model intumescent coating performance under various fire exposure conditions
- To identify and evaluate the main parameters which can describe the intumescence performance with sufficient accuracy
General illustration of intumescence

Pre heating
- Virgin Zone
- Melting
- Blowing
- Fully Expanded Char
- Protected Substrate

During Heating
- Heat

Post heating
- Heat
Energy conservation in the coating:

Influential issues:

• Expansion
• Thermal conductivity
• Decomposition heat
• Mass loss rate
• Convection heat loss (gas transportation)

\[
\frac{\partial}{\partial x} (\lambda \frac{\partial T}{\partial x}) \times A + \Delta h_{\text{decomposition}} \left(- \frac{\partial m_{\text{reactive}}}{\partial t} \right) = \\
(m_{\text{solid}} C_{\text{solid}} + m_{\text{gas}} C_{\text{gas}}) \frac{\partial T_i}{\partial t} \\
+ (C_{\text{gas}} T_i \frac{\partial (\varepsilon_{\text{porosity}} A_{\text{area}} \Delta x_{\text{thickness}} \rho_{\text{gas}})}{\partial t} + C_{\text{solid}} T_i \frac{\partial m_{\text{solid}}}{\partial t}) \\
+ \frac{\partial \Delta m_{\text{gas}}}{\partial x} C_{\text{gas}} T_i
\]
Chemicals in the coating

- 1, inorganic acid sources

\[\text{NH}_4\text{H}_2\text{PO}_4 \xrightarrow{\Delta} \text{NH}_3 + \text{H}_3\text{PO}_4 \]

- 2, Blowing agent (organic amine or amide)

- 3, Charring material (carbon-rich polyhydric compound)
Modelling Intumescent Coating Behaviour in Fire

Jifeng Yuan, Yong Wang

School of Mechanical, Aerospace and Civil Engineering
The University of Manchester

Decomposition process

Reaction rate constant
(Arrhenius equation)

\[
K_j = A_j \exp\left(-\frac{E_j}{\mathcal{R}T}\right), \quad j = 1, 3
\]

Mass loss rate

\[
\frac{\partial m_{\text{solid}}}{\partial t} = m_0 \left(-K_1 Y_1 - K_2 Y_2^2 - K_3 Y_3 + \nu_c K_3 Y_3 \right)
\]

Decomposition heat

\[
\Delta H = m_0 \left(K_1 Y_1 H_1 + K_2 Y_2^2 H_2 + K_3 Y_3 H_3 \right)
\]

Expansion

Total thickness

\[
x = x_0 + \Delta b
\]

Expansion rate

\[
\frac{\partial \Delta b}{\partial t} = \beta \frac{m_0 K_2 Y_2^2}{\rho_{\text{gas}}}
\]
Gas transportation

\[\Delta m_{\text{gas}}^{\text{diff}} C_i T_i = \left(\rho_{\text{in}} u_{\text{in}} C_{i-1} T_{i-1} - \rho_{\text{out}} u_{\text{out}} C_i T_i \right) \times \Delta t \]

- Gas leaves this discretized layer (gas-out) is:
 - Gas transferred from lower layer (gas-in) PLUS gas produced from solid decomposition
 - Subtract contribution responsible for bubbling

- Decompositions happen to produce gas product

- Retained gas change in mass:
 - Total volume, Porosity and Density

\[\rho_{\text{out}} u_{\text{out}} = \rho_{\text{in}} u_{\text{in}} + m_0 \left(K_1 Y_1 + K_2 Y_2^2 + (1 - \nu_c) K_3 Y_3 \right) - \frac{\partial (\varepsilon \Delta x \rho)}{\partial t} \]
Thermal conductivity & Bubble size

Thermal conductivity:

\[\lambda^* = \lambda_s \frac{\frac{\lambda_g}{\varepsilon^3} + 1 - \frac{2}{\varepsilon^3}}{\frac{\lambda_s}{\varepsilon^3} - \varepsilon + 1 - \frac{2}{\varepsilon^3} + \varepsilon} \]

Gas phase conductivity:

\[\lambda_g = \lambda_{\text{cond}} + \lambda_{\text{rad}} \]

Conduction part:

\[\lambda_{\text{cond}} = 4.815 \times 10^{-4} T^{0.717} \text{W/m·K} \]

Radiation part:

\[\lambda_{\text{rad}} = \frac{8}{3} d e \sigma T^3 \]
Modelling Intumescent Coating Behaviour in Fire

<table>
<thead>
<tr>
<th>Variables</th>
<th>Values</th>
<th>Variables</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1) (s)</td>
<td>800(+)</td>
<td>(\varepsilon_0)</td>
<td>0.3(*)</td>
</tr>
<tr>
<td>(E_1) (kJ/mol)</td>
<td>53.384(+)</td>
<td>(\lambda_c) (Kw/mK)</td>
<td>0.345×10^{-3}(+)</td>
</tr>
<tr>
<td>(A_2) (s)</td>
<td>6.9×10^{6}(+)</td>
<td>(\lambda_f) (Kw/mK)</td>
<td>0.067×10^{-3}(+)</td>
</tr>
<tr>
<td>(E_2) (kJ/mol)</td>
<td>93.035(+)</td>
<td>(\lambda_s) (Kw/mK)</td>
<td>37.68×10^{-3}(+)</td>
</tr>
<tr>
<td>(A_3) (s)</td>
<td>5.0(+)</td>
<td>(\rho_c) (kg/m³)</td>
<td>1400.0(+)</td>
</tr>
<tr>
<td>(E_3) (kJ/mol)</td>
<td>63.786(+)</td>
<td>(\rho_s) (kg/m³)</td>
<td>7850.0(+)</td>
</tr>
<tr>
<td>(v_c)</td>
<td>0.784(+)</td>
<td>(e_c)</td>
<td>1.0(+)</td>
</tr>
<tr>
<td>(v_g)</td>
<td>0.216(+)</td>
<td>(e_f)</td>
<td>0.8(+)</td>
</tr>
<tr>
<td>(\Delta h_1) (kJ/kg)</td>
<td>-1256(*)</td>
<td>(d_{c0}) (m)</td>
<td>5.0×10^{-6}(*)</td>
</tr>
<tr>
<td>(\Delta h_2) (kJ/kg)</td>
<td>-1256(*)</td>
<td>(d_{f0}) (m)</td>
<td>325.0×10^{-6}(*)</td>
</tr>
<tr>
<td>(\Delta h_3) (kJ/kg)</td>
<td>9789(+)</td>
<td>(E_{\text{max}})</td>
<td>3.0(+)</td>
</tr>
<tr>
<td>(Y_{10})</td>
<td>0.28(+)</td>
<td>(\beta)</td>
<td>1.0(*)</td>
</tr>
<tr>
<td>(Y_{20})</td>
<td>0.17(+)</td>
<td>(W_{v_2}), (W_p) (kg/mol)</td>
<td>30.0×10^{-3}(*)</td>
</tr>
<tr>
<td>(Y_{30})</td>
<td>0.55(+)</td>
<td>(h) (kW/m²)</td>
<td>20.0(*)</td>
</tr>
<tr>
<td>(C_1) (kJ/kg/K)</td>
<td>1.884(+)</td>
<td>(Q) (kW/m²)</td>
<td>157.0(+)</td>
</tr>
<tr>
<td>(C_4) (kJ/kg/K)</td>
<td>1.63(+)</td>
<td>(\tau_{c0}) (m)</td>
<td>0.2×10^{-2}(+)</td>
</tr>
<tr>
<td>(C_5) (kJ/kg/K)</td>
<td>0.42(+)</td>
<td>(\tau_s) (m)</td>
<td>0.15×10^{-2}(+)</td>
</tr>
<tr>
<td>(C_6) (kJ/kg/K)</td>
<td>1.0(+)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Validation

To validate the mathematical model, a reference case (Cagliostro, 1975) has been studied.

Coating thickness: 2mm
Steel substrate thickness: 1.5mm
External heat flux: 157kW/m²
Sensitivity study

- E2 value has significant effect on intumescent performance
- 20% difference in E2 value can lead to 100K difference in coating performance
• E3 value demonstrate importance on post heating period
• Lower E3 value speeds up bubble growth, gives higher radiative thermal conductivity
Modelling Intumescent Coating Behaviour in Fire

- Bubble size determines the radiative heat transfer
- Maximum expansion ratio has an effect on effective thermal conductivity

Jifeng Yuan, Yong Wang

School of Mechanical, Aerospace and Civil Engineering
The University of Manchester
• Decomposition heat H, blowing gas retaining ratio β, gas movement, and mass fraction of blowing agent have less effect on the performance
Key variables and determination

- **Kinetics:**
 E2 and E3
 Measuring by Thermogravimetric Analysis (TGA)

- **Maximum expansion factor:**
 Emax
 Use Viscosity-Temperature relationship

- **Bubble size:**
 d
 Back calculating from measured thermal conductivity
Implementation of the model

Intumescence under cone-calorimeter

Test B12:
Dried Coating Thickness (DFT): 0.4mm
Steel plate: 10mm
Temperature history in test B12

- Estimated \(E_2 = 115,000 \)
According to Expansion history and effective thermal conductivity data provided

Estimated final pore size: 3.5mm.
Modelling Intumescent Coating Behaviour in Fire

Jifeng Yuan, Yong Wang

School of Mechanical, Aerospace and Civil Engineering
The University of Manchester
Based on estimated E2 and Pore size, the prediction best fit experimental results when E3=55,000
Modelling against other tests

Predictions by use of parameters extracted from test B12

- Test A6: DFT=0.4mm, Steel plate =20mm
- Test A3: DFT=0.8mm, Steel plate =20mm
- Test B7: DFT=1.2mm, Steel plate =10mm
- Test A6: DFT=0.4mm, Steel plate =20mm
Conclusion

- The model, describing expanding coating and dynamic material properties, has been validated by experimental results.
- Chemical kinetics (E2, E3), Maximum expansion ratio, and Pore size demonstrate their importance on fire protection performance.

Future works

- TGA test will be conducted for accurate kinetic values.
- Further study with expanding process, including viscosity study, will assist to predict Emax.
- Validate model in real fire conditions and on larger scale tests.
Thank you for attention!