Design of composite columns under high temperatures with special consideration of imperfections

Prof. Dr.-Ing. Jörg Lange

Dipl.-Ing. Anja Urbach
Outlining

- Introduction
- Thermal Analysis
- Mechanical Analysis
- Imperfections
- Conclusion
Advantages of composite columns

- Small dimensions at high load level
- Uniform dimension in multi-storey building
- High fire resistance because of the insulation properties of concrete
- No additional fire proofing
Introduction

- Advantages
- Types
- Heating and load behaviour
- Calculation of fire resistance

- Thermal analysis
- Mechanical analysis
- Imperfections
- Conclusion
Advantages of composite columns

- Small dimensions at high load level
- Uniform dimension in multi-storey building
- High fire resistance using the insulation properties of concrete
- No additional fire proofing
Types of composite columns

- Introduction
 - Advantages
 - Types
 - Heating and load behaviour
 - Calculation of fire resistance
- Thermal analysis
- Mechanical analysis
- Imperfections
- Conclusion
Heating and load behaviour

- Temperature distribution after 90 minutes of standard fire exposure
Calculation of fire resistance

- Divided in two independent steps
 - Thermal analysis
 - Calculation of the temperature distribution over the cross section
 - Mechanical analysis
 - Calculation of the axial buckling load
 - Considering thermally induced stresses
 - Including geometrical Imperfection
Thermal properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Steel</th>
<th>Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal conductivity λ (20°C)</td>
<td>53 W/m K</td>
<td>2 W/m K</td>
</tr>
<tr>
<td>Heat capacity c (20°C)</td>
<td>440 J/kg K</td>
<td>900 J/kg K</td>
</tr>
<tr>
<td>Convection coefficient α_c</td>
<td>25 W/m² K</td>
<td>25 W/m² K</td>
</tr>
<tr>
<td>Emissivity coefficient ε_{res}</td>
<td>0.56</td>
<td>0.56</td>
</tr>
</tbody>
</table>
Standard fire ISO-834

- Introduction
- Thermal analysis
 - Thermal properties
 - Standard fire exposure
 - Natural fire exposure
- Mechanical analysis
- Imperfections
- Conclusion

![Graph showing temperature in °C over time in minutes for a standard fire ISO-834. The graph shows an increase in temperature over time.](image-url)
Temperature distribution under standard fire exposure (90 min.)

- Introduction
- Thermal analysis
 - Thermal properties
 - Standard fire exposure
- Natural fire exposure
- Mechanical analysis
- Imperfections
- Conclusion
Temperature distribution under standard fire exposure (90 min.)
Natural fire exposure

Fire load: $q_{\text{fid}} = 1700 \text{ MJ/m}^2$; opening factor: $O = 0.14 \text{ m}^{0.5}$
Temperature distribution under natural fire exposure (90 min.)

Introduction

Thermal analysis
 ➤ Thermal properties
 ➤ Standard fire exposure
 ➤ Natural fire exposure

Mechanical analysis

Imperfections

Conclusion
Stress-strain relationship for steel at elevated temperatures

Introduction
Thermal analysis
Mechanical analysis
- Stress-strain relationship
- Calculation procedure
Imperfections
Conclusion
Stress-strain relationship for concrete at elevated temperatures

Introduction
Thermal analysis
Mechanical analysis
 Stress-strain relationship
 Calculation procedure
Imperfections
Conclusion
Introduction

Thermal analysis

Mechanical analysis

Stress-strain relationship

Calculation procedure

Imperfections

Conclusion

θ = 200°C

ε = 0.004

θ = 400°C

ε = 0.004

\[N_{zentr} = \Sigma (\sigma_{ai,\theta,\varepsilon} A_{ai} + \sigma_{ci,\theta,\varepsilon} A_{ci}) \]

\[N_{ki} = \frac{\Sigma (E_{ai,\theta,\varepsilon} l_{ai} + E_{ci,\theta,\varepsilon} l_{ci})}{s_k^2} \]
Resistance of the cross-section as a function of axial strain

Introduction

Thermal analysis

Mechanical analysis
 - Stress-strain relationship
 - Calculation procedure

Imperfections

Conclusion

\[
N_{pl} = -5607 \text{ kN}
\]

\[
\text{max } N_{zentr} = -5000 \text{ kN}
\]

![Graph showing the resistance of the cross-section as a function of axial strain.](image)
Euler buckling load as a function of axial strain

- Thermal analysis
- Mechanical analysis
 - Stress-strain relationship
 - Calculation procedure
- Imperfections
- Conclusion
Determination of the axial buckling load

- Introduction
- Thermal analysis
- Mechanical analysis
 - Stress-strain relationship
 - Calculation procedure
- Imperfections
- Conclusion
Thermally induced stress

- Residual stress at a plane cross-section of a section:
 - Outside: compression ↔ inside: tension

Introduction
- Thermal analysis
- Mechanical analysis
- Imperfections
 - Thermally induced stress
 - Effect of residual stress
 - Geometrical imperfection
- Conclusion
Effect of residual stresses on the axial buckling load

- Additional compressive stress at the outer range of the cross-section

- Decrease of stiffness

Introduction

- Thermal analysis
- Mechanical analysis
- Imperfections
 - Thermally induced stress
 - Effect of residual stress
 - Geometrical imperfection
- Conclusion
Axial buckling load as a function of the buckling length

Introduction

Thermal analysis

Mechanical analysis

Imperfections

- Thermally induced stress
- Effect of residual stress
- Geometrical imperfection

Conclusion

Axial buckling load (z-axis)

Axial buckling load (y-axis)
Geometrical imperfection and eccentric loading

- Determination of the moment-curvature relationship
- Consideration of the unequal distribution of the stiffness along the column
 - Stiffness is dependent upon load
- Second-order analysis including geometrical imperfection
Conclusion

- The calculation of fire resistance of composite columns is divided in two steps
 - Thermal analysis calculates the temperature distribution over the cross section
 - Mechanical analysis with temperature dependent material laws
 - Thermal stress decreases the axial buckling load
Institute for steel structures and fractural mechanics
Thank you for your attention